A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
Abstract
Background
The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs.
Methods
Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months.
Results
Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction.
Conclusions
This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression.