RlapsRisk® BC

Prognostic risk profiling
for breast cancer

Next-generation AI testing from routine H&E to inform the treatment pathway for early breast cancer patients

Clinical context

Relapse risk assessment helps oncologists select the best treatment plan for patients

14 secs
Incidence is high. Every 14 seconds, across the globe, a woman is diagnosed with breast cancer.4
+20%
Since 2008, worldwide breast cancer incidence has increased by more than 20 percent.4
10%
Approximately 10% of all patients will relapse after their initial treatment.5
70%
Nearly 70% of patients fall into the ER+/HER2- subgroup where there are a variety of treatments for oncologists to consider.

Risk of recurrence plays a significant role in the prognosis of the largest patient subgroup, ER+/HER2-.

Those who relapse enter a chronic disease phase and are significantly more likely to have worse outcomes. It's pivotal to identify these patients as early as possible to adapt their treatment strategies and evaluate their eligibility for treatment escalation, including newer targeted therapies, like CDK4/6 inhibitors1,2.

Identifying patients who are unlikely to relapse is also critical and a challenge. These patients may be able to safely avoid chemotherapies3, which often carry harsh side effects. But the risks attributed to relapse prompt oncologists to be conservative to avoid wrongly classifying high-risk patients, causing many to be potentially over-treated.

Current testing methods either lack consistency in accuracy6, 7, 8, do not address all subgroups effectively9,10, or they are expensive and not always accessible11, such as gene expression tests. The stakes are high for risk assessment in early breast cancer to limit the number of patients who are under or over treated.

RlapsRisk BC outperforms standard testing in accurately classifying patients as high or low risk in studies

The study population illustrated in the animation has been condensed to a representative population of 100 patients. The circles represent a percentage of patients who did not experience an event during the 10 year time period. The diamonds represent a percentage of patients who did experience an event during the 10 year time period.

International clinical studies show that RlapsRisk BC can more precisely stratify patients into high and low risk groups than both traditional clinical factors assessments and gene expression tests*. In the pre-specified pooled analysis, It significantly separated patients into two groups of risk with an hazard ratio of 7.42 (95% CI, 4.32–12.75).  With a consistently high Negative Predictive Value (NPV) across different cohorts (88% - 97.4%), RlapsRisk BC demonstrates it can also support safe identification of low risk patients. It also reclassifies those patients in the intermediate clinical risk category, and adds novel pathological based insights into the therapeutic decision making workflow12.

By adding additional information to the diagnostic workflow, used stand-alone or in combination with genomic signatures, RlapsRisk BC shows potential to help clinicians both reduce overtreatment and identify patients at higher risk who may benefit from adjuvant chemotherapy and other precision therapies12.

* Based on a cohort containing patients only treated with endocrine therapy and enriched with patients who experienced a metastatic relapse

Benefits

Pathology-based risk profiling makes precision testing more accessible and scalable

Risk stratification icon
Risk stratification

Identifies typically difficult to classify subpopulations, such as grade 2 patients12

Rapid results icon
Rapid results

With a quick turn around time, results are ready in time for the tumor board

Routine samples icon
Routine samples

By analyzing routine multi-modal data, level the playing field for patients with greater access to precision testing and personalized care

Additional insights icon
Additional insights

RlapsRisk BC’s AI image analysis is an independent prognostic factor12, delivering critical tissue-level insights beyond standard clinical variables

RlapsRisk on-screen and tablet view showcasing risk assessment for breast cancer

RlapsRisk® BC features

Meeting pathologists where they are to deliver results where they’re needed

Indication icon
Indication

Suitable for adults with primary invasive  early breast cancer (ER+/HER2-).

Multimodal AI icon
Multimodal AI

Combines image analysis and patient clinical information: age, number of invaded lymph nodes, and tumor size.

Report icon
PDF report

Easily accessible and supports pathologist interpretation.

Workplace agnostic icon
Workflow agnostic

Deployment is feasible across existing IMS systems or IT settings.

In clinical routine

Integrating AI diagnostics seamlessly into the therapeutic and pathology workflows

Clinical utility

RlapsRisk BC’s development and clinical studies set the foundation for product robustness and generalizability

10k+ images
Developed and evaluated with high-quality imaging data from varied clinical settings and geographic regions.
9 centers
RlapsRisk BC and previous prototypes have been tested in various international lab settings, for three years.
48 experts
Product development fostered in collaboration and informed by international breast oncology and pathology experts.
Professor Fabrice André, MD, PhD
“Thanks to the solution we now have a better understanding of the underlying mechanism of highly aggressive tumors and the treatment needs for these patients. Identifying very high-risk patients earlier will enable us to adjust the therapeutic strategy for more favorable patient outcomes.”
Professor Fabrice André, MD, PhD
Director of Research, Gustave Roussy. Incoming President of ESMO

Research and development

Timeline of milestones

Owkin wins the AI for Health challenge
2019
Owkin wins the AI for Health challenge
First model proof of concept (POC) trained
2020
First model proof of concept (POC) trained
Abstract presented at ESMO Congress, Switzerland
2021
Abstract presented at ESMO Congress, Switzerland
Abstract presented at USCAP
2022
Abstract presented at USCAP
POC external validation abstract presented at ESMO
2022
POC external validation abstract presented at ESMO
Development of next generation RlapsRisk BC begins
2023
Development of next generation RlapsRisk BC begins
Deployed at Hospital Bicêtre AP-HP to test in pathology workflows
2024
Deployed at Hospital Bicêtre AP-HP to test in pathology workflows
Deployed at Cerba Path to evaluate in pathology workflows
2024
Deployed at Cerba Path to evaluate in pathology workflows
POC clinical validation published in Nature Communications [13]
2025
POC clinical validation published in Nature Communications [13]
2019
July
Jul
2020
May
May
2021
September
Sep
2022
March
Mar
2022
September
Sep
2023
March
Mar
2024
January
Jan
2024
July
Jul
2025
June
Jun
Citations
  1. Mastro LD, Mansutti M, Bisagni G, Ponzone R, Durando A, Amaducci L, et al. Extended therapy with letrozole as adjuvant treatment of postmenopausal patients with early-stage breast cancer: a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 1 oct 2021;22(10):1458‑67
  2. Harbeck N, Rastogi P, Martin M, Tolaney SM, Shao ZM, Fasching PA, et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study. Ann Oncol. 1 déc 2021;32(12):1571‑81
  3. Ferreira AR, Di Meglio A, Pistilli B, Gbenou AS, El-Mouhebb M, Dauchy S, et al. Differential impact of endocrine therapy and chemotherapy on quality of life of breast cancer survivors: a prospective patient-reported outcomes analysis. Ann Oncol Off J Eur Soc Med Oncol. 1 nov 2019;30(11):1784‑95
  4. Breast Cancer Statistics And Resources
  5. Long-term hazard of recurrence in HER2+ breast cancer patients untreated with anti-HER2 therapy, Strasser-Weippl et al. 2015, BMC.
  6. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008 May;21 Suppl 2:S8-S15. doi: 10.1038/modpathol.2008.34. PMID: 18437174
  7. Casterá C, Bernet L. HER2 immunohistochemistry inter-observer reproducibility in 205 cases of invasive breast carcinoma additionally tested by ISH. Ann Diagn Pathol. 2020 Apr;45:151451. doi: 10.1016/j.anndiagpath.2019.151451. Epub 2019 Dec 17. PMID: 31955049.
  8. Polley MY, Leung SC, McShane LM, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013 Dec 18;105(24):1897-906. doi: 10.1093/jnci/djt306
  9. Kalinsky K, Barlow WE, Gralow JR, et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. New England Journal of Medicine (NEJM), 2021. DOI:10.1056/NEJMoa2108873
  10. Del Mastro L, Lambertini M, Pondé N, et al. Tailoring adjuvant chemotherapy and ovarian function suppression in premenopausal patients with HR+/HER2− early breast cancer: a critical review. Cancer Treatment Reviews, 2021. DOI: 10.1016/j.ctrv.2021.102010
  11. Blok EJ, Bastiaannet E, van den Hout WB, et al. Systematic review of the clinical and economic value of gene expression profiles for invasive early breast cancer available in Europe. Cancer Treat Rev. 2018 Jan;62:74-90. doi: 10.1016/j.ctrv.2017.10.012
  12. Manuscript under review with peer reviewed journal, and available as a pre-print on medRxiv: https://www.medrxiv.org/content/10.1101/2025.07.18.25331788v2
  13. Garberis, I., Gaury, V., Saillard, C. et al. Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides. Nat Commun 16, 5876 (2025)
Legal notice
The device is currently under development, and not for clinical use. Not FDA cleared or approved for use in USA. Please contact Owkin for more information. Images shown may represent the range of products, or be for illustration purposes only, and may not be an exact representation of the product.
RlapsRisk BC is developed within the PortrAIt consortium, a french consortium financed by the government within the framework of France 2030 and by the European Union - Next Generation EU within the framework of the France Relance Plan.
Manufacturer: Owkin France. RlapsRisk® BC is a trademark of Owkin Inc. European Patent Application No. EP21306284.7 / International Application No. PCT/US2022/043692
Information updated on 24th September 2025 - Version W002V2